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Abstract
This paper investigates a background charge one Skyrme field chirally coupled
to light fermions on the 3-sphere. The Dirac equation for the system commutes
with a generalized angular momentum or grand spin. It can be solved explicitly
for a Skyrme configuration given by the hedgehog form. The energy spectrum
and degeneracies are derived for all values of the grand spin. Solutions for non-
zero grand spin are each characterized by a set of four polynomials. The paper
also discusses the energy of the Dirac sea using zeta-function regularization.

PACS numbers: 03.50.Kk, 03.70.+k, 05.45.Yv, 11.10.Lm, 12.39.Dc

1. Introduction

The Skyrme model is a nonlinear SU(2) field theory which gives a good description of atomic
nuclei and their low-energy interactions [1]. In addition to the fundamental pion excitations,
the theory also has topological soliton solutions known as Skyrmions. These are labelled
by a topological charge or generalized winding number B, which can be interpreted as the
baryon number of the configuration. On quantization, Skyrmions are found to describe nuclei,
�-resonance [2] and also bound states of nuclei, see [3–8] for the quantization of multi-
Skyrmions and [9–11] for recent quantitative predictions of the Skyrme model. It is well
known that Skyrmions can be quantized as fermions [12, 13]. Therefore, when the Skyrme
field is coupled to a fermion field, there are two different ways of describing fermions in
the same model. The fermion field can then be thought of as light quarks in the presence
of atomic nuclei [14]. In the presence of a Skyrme field, the energy spectrum of the Dirac
operator shows a curious behaviour, namely, a mode crosses from the positive to the negative
spectrum as the coupling constant is increased [15]. In a very similar model, Kahana and
Ripka calculate the baryon density in the one-loop approximation [16] and the energy of
the Dirac sea quarks [17]. The model has been developed further, e.g. in [18, 19], as an
interesting alternative to the Skyrme model. Recently, these calculations have been extended to
multi-Skyrmions [20, 21].
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Static field configurations in the original Skyrme model in flat space are given by maps
R

3 → SU(2). By using the boundary condition for the Skyrme field to unify the domain of
such a map with infinity we make the domain compact and equivalent to the 3-sphere S3. If we
also consider that S3 is the group manifold of SU(2), we can see that the field configurations are
topologically equivalent to maps S3 → S3 and, because of this, the model can be generalized
to the base space being a sphere of radius L [22, 23]. In the limit L → ∞, the original model
is recovered. The advantage of working on S3 is that the Bogomoln’yi equation can be solved
for B = 1, and the solution is given by the identity map [22]. Physically, the 3-sphere with a
small radius can be used as a model for dense nuclear matter and the identity map corresponds
to the restoration of chiral symmetry. Mathematically, the identity map leads to an enhanced
symmetry of the problem, and this will enable us to calculate the energy spectrum and the
corresponding fermion wave functions explicitly in section 3.

Another motivation for studying fermions coupled to Skyrmions arises from the
observation that Skyrmions and monopoles share many properties, e.g. the energy density
of their static solutions is very similar as is their scattering behaviour, see [24] for a review.
Jackiw and Rebbi first observed that there are fermionic zero modes when fermions are coupled
to Yang–Mills monopoles [25]. Manton and Schroers showed that for BPS monopoles there
is an index theorem which ensures that for a monopole configuration of topological charge n
there is an n-dimensional vector space of fermionic zero modes [26]. For the proof of this
theorem the Bogomoln’yi equations are crucial. For n = 1, the fermionic zero mode coupled
to a monopole has been calculated explicitly. As mentioned above, the B = 1 Skyrmions on
S3 also satisfies a Bogomolny equation and explicit calculations are possible. However, a zero
mode only exists for certain values of the coupling constant.

In [27] a system of light fermions, on R × S3, coupled to a spherically-symmetric
background Skyrme field was studied for grand spin G = 0. In this paper we consider the
general case where the grand spin also takes positive integer values. The Dirac equation on
R × S3 is derived in section 2 through the use of stereographic coordinates. In section 2.1,
the solution of the Dirac equation for G = 0 is reviewed. In section 3, the correct ansatz for
the spin–isospin spinor for general G is deduced using parity arguments. We then present the
general solution. Plots of energy against fermion–Skyrmion coupling constant are also given.
In section 3.2, we discuss the degeneracy of energy eigenvalues. In section 4, we address the
problem of calculating the energy of the Dirac sea using zeta-function regularization. We end
with a conclusion.

2. The Dirac equation on R × S3

Following [27], we now recall the derivation of the Dirac equation when spacetime is the
Cartesian product of the real line and a 3-sphere of radius L = 1, with Minkowskian signature.
For the spatial part, consider the stereographic projection from the north pole N to the plane
through the equator. Let S3 be embedded in R

4 with coordinates (x1, x2, x3, w). As a result of
projection from N onto the equatorial R

3 plane, points of S3 can be labelled with coordinates
Xi. The chart is defined everywhere apart from the projection point, N. The coordinates Xi can
be written in terms of R

4 coordinates as

Xi = xi

1 − w
. (1)

We define R2 = X2
1 + X2

2 + X2
3. Then the metric on the Cartesian product R × S3 can be

written as

gR×S3 = diag

(
1,− 4

(1 + R2)2
,− 4

(1 + R2)2
,− 4

(1 + R2)2

)
. (2)

2
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The metric gR×S3 has Minkowskian signature given by (1,−1,−1,−1). We now choose the
non-coordinate basis

êα = eα
μ∂Xμ

, (3)

where X0 = t is the time coordinate, μ and α take values in {0, 1, 2, 3} and Einstein’s
summation convention applies. It is convenient to choose diagonal vierbeins eα

μ, such that

e0
0 = 1, ei

j = −1 + R2

2
δi

j , (4)

where δi
j is the Kronecker delta, i, j take values in {1, 2, 3} and all other components vanish.

With our choice of vierbeins, we can calculate the matrix-valued connection 1-form ωαβ . The
1-form ωαβ satisfies the metric compatibility condition ωαβ = −ωβα , and the torsion-free
condition

dθ̂ α + ωα
β ∧ θ̂ β = 0, (5)

where θ̂ α = eα
μ dXμ is the dual basis of êα . After a short calculation we find

ωαβ =
⎧⎨
⎩

2

1 + R2
(Xα dXβ − Xβ dXα) α, β = 1, 2, 3,

0 otherwise.
(6)

As seen from the above formula only the wjk-components of the connection 1-form for spatial
indices j, k = 1, 2, 3 with k �= j are non-zero, because the curvature of the spacetime R × S3

lies purely in the spatial part. The spin connection 	μ can now be expressed as

	μ dXμ = − i

2
ωαβ
αβ, (7)

where 
αβ = i
4 [γα, γβ] and the components of the commutator are the standard gamma-

matrices, satisfying {γα, γβ} = 2ηαβ . We work with the following representation of gamma-
matrices:

γ 0 =
(

12 0
0 −12

)
, γ i =

(
0 σi

−σi 0

)
, γ 5 =

(
0 12

12 0

)
, (8)

because we will be working with parity eigenfunctions. Here σi denotes the set of three Pauli
matrices defined by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (9)

For massless fermions in curved spacetime, the Lagrangian is

Lfermion = ψ̄(iγ αeα
κ(∂κ + 	κ))ψ. (10)

With our choice of coordinates and vierbeins, we obtain

Lfermion = ψ̄(Xi, t)

(
iγ 0∂t − iγ i

(
1 + R2

2
∂Xi

− Xi

))
ψ(Xi, t). (11)

In this paper, we investigate fermions coupled to Skyrmions on R × S3. We consider a
background B = 1 Skyrme field coupled to the fermions. The full Lagrangian L is the sum
of the fermion Lagrangian Lfermion, the Skyrmion Lagrangian LSkyrmion and the interaction
Lagrangian Lint. We consider fermions in the background of a static Skyrme field and neglect
the backreaction. Therefore, we no longer discuss the Skyrmion Lagrangian, and the interested
reader is referred to [23]. Lint is derived in [28], namely

Lint = −gψ̄(σ + iγ5τ · π)ψ, (12)

3
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where U = σ + iτ · π is a parametrization of the Skyrme field and g is the coupling constant.
ψ is a spin–isospin spinor. It is convenient to split the spinor into two 2 × 2 spin–isospin
matrices ψ1 and ψ2 such that

ψ =
(

ψ1

ψ2

)
. (13)

Since any complex 2×2 matrix can be expressed as a linear combination of the Pauli matrices
and the identity, it is convenient to choose these four as a basis of SU(2). The spin–isospin
matrices can then be written as ψ1 = a

(1)
0 12 + ia(1)

k σk, and a similar expression holds for ψ2.
With this notation spin operators act on ψ by left multiplication,

σk(ψ) =
(

σkψ1

σkψ2

)
, (14)

whereas the isospin matrices act on ψ by right multiplication,

τk(ψ) =
(

ψ1σ
T
k

ψ2σ
T
k

)
. (15)

Note the useful identity

σT
k = −σ2σkσ2. (16)

In this paper, we only consider spherically symmetric Skyrmions. The B = 1 Skyrmion
on S3 is spherically symmetric [22], but for B > 1 this is no longer true. Spherically symmetric
Skyrme fields are best expressed in terms of polar coordinates,

U = exp(if (χ)eχ · τ ), (17)

where f (χ) is the ‘radial’ shape function and eχ is the unit vector in the χ direction, see
equation (23). Using (11) and (12) we can write down the Dirac equations for fermions
coupled to a spherically symmetric background Skyrmion. We obtain(

iγ 0∂t − iγ i

(
1 + R2

2
∂Xi

− Xi

)
− gUγ5

)
ψ(Xi, t) = 0, (18)

where

Uγ5 = cos f (χ) + iγ5eχ · τ sin f (χ). (19)

2.1. Solutions of the Dirac equation for G = 0

In order to solve the Dirac equation (18) we introduce spherical polar coordinates, namely the
point x = (x1, x2, x3, w) ∈ S3 ⊂ R

4 can be written as

x = (sin χ sin θ cos φ, sin χ sin θ sin φ, sin χ cos θ, cos χ) . (20)

The angles (χ, θ, φ) can now be expressed in terms of Xi as

χ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan
2R

R2 − 1
+ π for R2 < 1,

π

2
for R2 = 1,

arctan
2R

R2 − 1
for R2 > 1,

θ = arctan

√
X2

1 + X2
2

X3
, (21)

φ = arctan
X2

X1
.

4
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Then the above Dirac equation (18) and the ansatz ψ(Xi, t) = eiEtψ(Xi) lead us to the
time-independent Dirac equation

Eψ =
(

g cos f (χ) σ ·p + igeχ · τ sin f (χ)

σ ·p − igeχ · τ sin f (χ) −g cos f (χ)

)
ψ, (22)

where

eχ =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ , eθ =

⎛
⎝cos θ cos φ

cos θ sin φ

−sin θ

⎞
⎠ , eφ =

⎛
⎝−sin φ

cos φ

0

⎞
⎠, (23)

and

σ · p = −i

(
eχ · σ

(
∂χ +

sin χ

1 − cos χ

)
− 1

sin χ
eθ · σ∂θ − 1

sin χ sin θ
eφ · σ∂φ

)
. (24)

The elements of the matrix in (22) commute with the total angular momentum operator
G = L + S + I where L is the orbital angular momentum, S = 1

2σ is the spin operator and
I = 1

2τ is the isospin operator. Equation (22) is also invariant under parity P̂ where

P̂ψ(Xi) = γ0ψ(−Xi), P̂XiP̂
−1 = −Xi. (25)

The G = 0 case is treated in [27]. There the ansatz for ψ gives rise to a system of two
first-order ODEs, which can be expressed as a second-order ODE. This equation can be solved
analytically for f (χ) = 0 and f (χ) = χ . In [27] the following energy spectrum was derived
for f (χ) = 0:

E = ±
√

g2 +

(
N +

3

2

)2

for N = 0, 1, 2, . . .. (26)

Setting u = cos χ , the eigenfunctions GN(u) were found to be given by Jacobi polynomials.
The shape function f (χ) = χ was also considered in [27]. This leads to a second-order
Fuchsian equation with four regular singular points, two at u = ±1, one at infinity and one
depending on E and g. The equation could still be solved in terms of polynomials. The
following energy spectrum was derived:

E0 = 3
2 − g, E±

n = 1
2 ±

√
n2 + 2n + (g − 1)2 for n = 1, 2, . . . (27)

with eigenfunctions

Gn(u) =
n∑

j=0

aj (u + 1)j , (28)

where

aj = (−1)j
(
E + g − 3

2

)(
E − g + 2j+1

2

)
j !(2j + 1)!!

j−1∏
i=1

(
E2 − E + 2g − g2 +

1

4
− (i + 1)2

)
, (29)

for j = 1, 2, . . . and a0 = 1. Here (2j + 1)!! = 1 · 3 · · · · · (2j + 1) is the product of odd
integers. Using E = 1

2 ±
√

(n + 1)2 − 2g + g2 in the product in (29), aj can be written as

aj = (−1)j
(
E + g − 3

2

)(
E − g + 2j+1

2

)
j !(2j + 1)!!

j−1∏
i=1

((n − i)(n + i + 2)). (30)

Expanding the product in (30) we obtain

aj = (−1)j
(

n

j

)
(n + j + 1)!

(n + 1)!(2j + 1)!!

(
E + g − 3

2

)(
E − g + 2j+1

2

)
n(n + 2)

. (31)

5
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3. Solutions of the Dirac equation for general G

In the following we derive the solution of the Dirac equation (22) for general G using that the
matrix elements of (22) commute with the grand spin G and parity. These types of calculations
are well known in the literature, see e.g. [18, 19] for the corresponding calculation in flat space.
For general G and parity (−1)G we make the ansatz

ψ =
⎛
⎝ √

1 − u
√

1 − u2G
G2(u) |GM〉b +

√
1 + u

√
1 − u2G−1

G3(u) |GM〉c
i
√

1 + u
√

1 − u2G
G4(u) |GM〉d + i

√
1 − u

√
1 − u2G−1

G1(u) |GM〉a

⎞
⎠ , (32)

where |GM〉a,b,c,d are G-eigenfunctions of parity ±(−1)G defined in the appendix and G1(u),
G2(u), G3(u) and G4(u) are functions of u. The normalization factors are chosen for later
convenience. Clearly exchanging the upper and lower rows will change the parity by a factor
of −1. A short calculation shows that this is equivalent to making the transformation

g → −g (33)

in the resulting equations.
Substituting the state (32) into the Dirac equation (22) for the case f (χ) = χ, we obtain

the following system of four coupled first-order differential equations in G1(u), G2(u), G3(u)

and G4(u), namely

(1 − u)
dG1

du
=

(
G +

1

2
− g(1 − u)

2G + 1

)
G1 + (E − gu)G3 − 2g

√
G(G + 1)(1 − u2)

2G + 1
G4, (34)

(1 − u)
dG2

du
=

(
G +

3

2
− g(1 − u)

2G + 1

)
G2 − (E + gu)G4 +

2g
√

G(G + 1)

2G + 1
G3, (35)

(1 + u)
dG3

du
= −

(
G +

1

2
− g(1 + u)

2G + 1

)
G3 − (E + gu)G1 +

2g
√

G(G + 1)(1 − u2)

2G + 1
G2, (36)

(1 + u)
dG4

du
= −

(
G +

3

2
− g(1 + u)

2G + 1

)
G4 + (E − gu)G2 − 2g

√
G(G + 1)

2G + 1
G1. (37)

These equations give the solutions for states with parity (−1)G. Due to the symmetry (33),
states with parity (−1)G+1 are obtained by replacing g by −g in the equations above. Further
details can be found in the appendix.

3.1. The energy spectrum

In this section, we derive the energy spectrum of the time-independent Dirac equation (22)
and the corresponding eigenfunctions. We discuss a useful symmetry of our system of
equations (34)–(37) and also comment on associated second-order and fourth-order equations.
In order to derive the spectrum, we use the theory of Fuchsian differential equations, and in
particular, regular singular points and their exponents, see [29]. Finally, we present the explicit
solution.

Under the transformation

(G1(u),G2(u),G3(u),G4(u)) 
→ (−G3(−u),−G4(−u),−G1(−u),−G2(−u)) (38)

followed by u 
→ −u, (35) is mapped into (37) and (34) into (36), and vice versa. Hence,
the system of equations (34)–(37) remains invariant. Eliminating G1(u) and G3(u) from the
system (34)–(37) results in a system of two second-order equations, which again map into each

6
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other via the symmetry (38). These second-order equations prove to be useful for deriving an
ansatz for G2(u) and G4(u). Finally, we can also derive two fourth-order ODEs, by eliminating
G4(u) and G2(u), respectively, again related via (38). Hence, if we have solutions for G2(u)

we can find solutions for G4(u). We can then use our system of first-order ODEs to find
solutions for G1(u) and G3(u).

In order to solve our equations we first have to derive the energy eigenvalues. Our system
of equations (34)–(37) has regular singular points at u = ±1 and an irregular singular point at
infinity. For both regular singular points the exponents are(

0, 0,−G − 1
2 ,−G − 3

2

)
. (39)

We require our solutions to be regular over the whole 3-sphere and, in particular, at the
north and south poles, u = ±1. The solutions corresponding to the exponents −G − 1

2
and −G − 3

2 contain poles, so we can exclude these solutions. The fact that there are two
exponents taking values of zero means that corresponding to each regular singular point is a
solution with logarithmic terms and the solution is therefore singular. As a result, we can also
exclude these solutions. The regular solution can therefore be expanded as a power series in
1 + u around the south pole, and also a power series in 1 − u around the north pole. These
two expansions only agree for certain values of the energy E. It turns out that these energy
eigenvalues can be calculated from the exponents at infinity of the fourth-order ODE in G2(u),
mentioned above, which arises by eliminating G1(u), G3(u), and G4(u) from our system of
equations (34)–(37). This equation is of Fuchsian type and has three regular singular points
at u = ±1 and infinity.

The solutions of Fuchsian differential equations can only have singularities at their singular
points. According to our discussion above, we are interested in the solutions of (22) which are
non-singular. Therefore, G2(u) has to be regular at u = ±1, and hence on the entire complex
plane. So, G2(u) is an analytic function, in fact an integral function, on the complex plane.
As it is the solution of a Fuchsian differential equation, it can only have poles at infinity, and
it follows that G2(u) is a polynomial.

The exponents corresponding to u = ∞ can be found by setting u = 1
z

and then
considering z → 0. We obtain the exponents

ρs = 1 + G ± 1
2

√
1 + 4E2 + 4E − 4g2, (40)

ρa = 1 + G ± 1
2

√
1 + 4E2 − 4E + 8g − 4g2. (41)

As argued above G2(u) is a polynomial. Let its degree be denoted by k. Then the
exponents at u = ∞ can be equated with −k. From the exponent ρs we obtain the following
energy eigenvalues:

E±
sym = − 1

2 ±
√

(k + G + 1)2 + g2 for G = 1, 2, . . . , k = 0, 1, . . . . (42)

E±
sym is a novel feature which arises for G > 0 only. Note that this energy is invariant under

g 
→ −g. From ρa in (41) we obtain another family of energy eigenvalues, namely

E±
asym = 1

2 ±
√

(k + G + 1)2 − 2g + g2 for G = 0, 1, . . . , k = 0, 1, . . . , (43)

where G and k are not both zero. This energy spectrum has already been obtained in [27] for
the case G = 0. A slight subtlety occurs for k = 0 and G = 0. In this case, only

E0 = 3
2 − g (44)

leads to a regular solution. The energy level (44) is rather special as it crosses from the positive
spectrum to the negative spectrum as the coupling constant g is varied, also see [27] for further
details.

7
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Now that we have derived the energy spectrum, we can solve the system (34)–(37) by first
considering the fourth-order ODE in G2(u). We make the ansatz that G2(u) is a polynomial
in 1 + u and insert this into our ODE to find the polynomial coefficients. The symmetry (38)
and the system of second-order equations for G2(u) and G4(u) lead to a related expression
for G4(u). Then the solution corresponding to E±

asym is found to be

G2(u) =
k∑

j=0

aj (1 + u)j and G4(u) = (−1)k
k∑

j=0

aj (1 − u)j . (45)

The general expression for aj is

aj = (−1)j
(

k

j

)
(2G + k + j + 1)!(2G + 1)!!

(2G + k + 1)!(2G + 2j + 1)!!

(
E + g − 3

2 − G
)(

E − g + 2j+1
2 + G

)
2G(k + g) + k(k + 2)

. (46)

If we set G = 0, and hence k = n, the above formula leads us to (31) which is equivalent to
the result from [27].

For E±
sym we find

G2(u) =
k∑

j=0

aj (1 + u)j and G4(u) = (−1)k+1
k∑

j=0

aj (1 − u)j . (47)

The general expression for aj is now

aj = (−1)j+1

(
k

j

)
(2G + k + j + 1)!(2G + 1)!!

(2G + k + 1)!(2G + 2j + 1)!!

(
E + g + 3

2 + G
)(

E − g − 2j+1
2 − G

)
2(G + 1)(g − k) − k2

.

(48)

We then use equations (37) and (35) to obtain G1(u) and G3(u), respectively, and it is easy to
see that G1(u) and G3(u) are polynomials of order k + 1.

We can carry out a consistency check on our solutions by setting g = 0 in
equations (34)–(37) and manipulating the equations to obtain two uncoupled second-order
ODEs. These are both Jacobi equations and have polynomial solutions which can be expressed
in terms of hypergeometric functions (see [30]). For g = 0, our solutions are the same.

3.2. Degeneracy of the energy spectrum

In order to discuss the degeneracy of the energy spectrum it is convenient to introduce
n = k + G, where the integer n is analogous to the principal quantum number arising in
the quantum mechanics of the hydrogen atom. Then the energy spectrum for states of parity
(−1)G is given by the two families

E±
sym(n) = − 1

2 ±
√

(n + 1)2 + g2 for n = 1, 2, . . . , (49)

E±
asym(n) = 1

2 ±
√

(n + 1)2 − 2g + g2 for n = 1, 2, . . . , (50)

and the special energy level (44),

E0 = 3
2 − g.

Figure 1 shows the energy spectra for different values of n. There are two different ways of
reading figure 1. The obvious interpretation is the energy spectrum of states of parity (−1)G as
a function of the coupling constant g ∈ R. For the second interpretation and in the following,
we restrict our attention to g � 0. Then, the negative values of g correspond to states with

8
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E
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0

−4

g

5

4
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−1

3

1

0

−5

−2

−3

−4 −1−3−5

−2

2

21

Figure 1. The energy E as a function of the coupling constant g for E0 (solid red curve), E±
asym(n)

(dotted blue curves) and E±
sym(n) (dashed yellow curves).

(This figure is in colour only in the electronic version)

parity (−1)G+1 due to symmetry (33), while positive values of g again correspond to states
of parity (−1)G. The latter interpretation is very useful for discussing the degeneracy of the
spectrum.

The energy level (44) only exists for G = 0. It gives rise to a positive parity state with
energy 3

2 −g and a negative parity state with energy 3
2 +g. Since the degeneracy of a state with

grand spin G is 2G + 1, these two states are non-degenerate for g > 0, and ‘parity doubling’
occurs for g = 0 [14].

For E±
asym(n), positive and negative parity states will in general have different energy

eigenvalues for a given value of the coupling constant g. Recall that n = k + G; hence, G can
vary from 0 to n. Therefore, the degeneracy is

D
(
E±

asym(n)
) =

n∑
G=0

(2G + 1) = (n + 1)2. (51)

For E±
sym(n), positive and negative parity states have the same energy for a given value

of the coupling constant g. These states only exist for G > 0; hence, G varies from 1 to n.
Therefore, the degeneracy is

D
(
E±

sym(n)
) = 2

n∑
G=1

(2G + 1) = 2n(n + 2), (52)

and the extra factor of 2 is due to parity.
We now consider the case of zero coupling (g = 0) which is equivalent to massless

fermions on R × S3. In this case there will clearly always be invariance under g → −g, so

Dg=0(E0) = 2, Dg=0
(
E±

asym(n)
)= 2(n + 1)2, Dg=0

(
E±

sym(ñ)
)= 2ñ(ñ + 2). (53)

9
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At E = 3
2 the energy levels E0 and E+

sym(1) are degenerate; hence, the degeneracy is

Dg=0
(
E = 3

2

) = 8. (54)

The energy eigenvalue E = − 3
2 only occurs for E−

asym(1); hence, the degeneracy is again

Dg=0
(
E = − 3

2

) = 8. (55)

The energy eigenvalue E = N+ 3
2 , N = 1, 2, . . . , is attained by E+

asym(N), and E+
sym(N+1);

hence,

Dg=0
(
E = N + 3

2

) = 2(N + 1)(N + 3) + 2(N + 1)2 = 4(N + 1)(N + 2). (56)

Similarly, E = −N − 3
2 is attained by E−

asym(N + 1) and E−
sym(N); hence

Dg=0
(
E = −N − 3

2

) = 2(N + 2)2 + 2N(N + 2) = 4(N + 1)(N + 2). (57)

After considering the factor of 2 due to isospin and another factor of 2 due to parity,
equations (56) and (57) are consistent with the results in [31].

So far, we have only considered generic degeneracies and the case g = 0. This energy
spectrum is rather special in that we can also calculate all the accidental degeneracies for
g > 0. These degeneracies all occur for rational values of g. For example, the negative parity
state with energy 3

2 + g is only degenerate with the states with E+
sym(n) for

g = 1
4 (n − 1)(n + 3) (58)

and with the (−1)G+1 parity states with E−
asym(n) (changing g to −g) for

g = 1
4n(n + 2). (59)

The positive parity state with energy 3
2 − g is always non-degenerate for g > 0. Similarly,

(−1)G parity states of energy E±
asym(n) are degenerate with (−1)G+1 parity states of energy

E±
asym(ñ) for

g = 1
4n(n + 2) − 1

4 ñ(ñ + 2), (60)

which is positive for n > ñ. Finally, states with energy E+
asym(n) and states with energy

E+
sym(ñ) are degenerate for

g = 4(ñ + 1)2 − (1 + (ñ + 1)2 − (n + 1)2)2

4(1 + (ñ + 1)2 − (n + 1)2)
, (61)

and a similar equation holds for E−
asym(n) and E−

sym(ñ).

4. The Dirac sea

In this section, we discuss the energy of the Dirac sea for fermions coupled to a Skyrme
field with shape functions f (χ) = 0 and f (χ) = χ. Spectrum and degeneracies have been
calculated in the previous section. Here, we explain how to use zeta-function regularization
[32] in this context. The regularized energy of the Dirac sea is related to the one-loop
corrections due to the fermion fields. It is an interesting question how the Dirac sea behaves for
background configurations with different topological charges. For f (χ) = 0, with topological
charge 0, that is for massive fermions on S3, we are able to derive a convergent expression
for the Dirac sea. For f (χ) = χ, with topological charge 1, we derive a novel type of zeta
function. However, we have so far been unable to derive a convergent series for the Dirac sea
in this case.

10
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In order to calculate the energy of the Dirac sea,

EDirac =
∞∑

N=0

D(N)E(N), (62)

where E(N) is the Nth negative energy eigenvalue, see e.g. [33], and D(N) is its degeneracy,
we define the zeta function

ζ(s) =
∞∑

N=0

D(N)E(N)−s . (63)

Expression (62) is clearly divergent. However, expression (63) is convergent for large enough
s. The Dirac sea energy (62) is then defined by the analytic continuation of (63) to s = −1.
For example, for g = 0 we have

Eg=0 = −4
∞∑

N=0

(N + 1)(N + 2)

(
N +

3

2

)−s ∣∣∣∣
s=−1

. (64)

Hence, the relevant zeta function is

ζg=0(s) = −4
∞∑

N=0

((
N +

3

2

)2

− 1

4

) (
N +

3

2

)−s

, (65)

which can be rewritten as

ζg=0(s) = −4ζH

(
s − 2, 3

2

)
+ ζH

(
s, 3

2

)
, (66)

where ζH (s, a) is the Hurwitz zeta function defined as

ζH (s, a) =
∞∑

n=0

(n + a)−s . (67)

Evaluating ζg=0(s) at s = −1 we obtain

Eg=0 = 17

240
. (68)

For massive fermions on R × S3 corresponding to the case f (χ) = 0 in section 2.1, the
energy is given by (26) and the degeneracy is

D(N) = 4(N + 1)(N + 2). (69)

Hence, the Dirac sea energy is given by

Ef (χ)=0 = −4
∞∑

N=0

(N + 1)(N + 2)

((
N +

3

2

)2

+ g2

)−s ∣∣∣∣∣
s=− 1

2

. (70)

Zeta functions of generalized Epstein–Hurwitz type are of the form

F(s; a, b2) =
∞∑

n=0

((n + a)2 + b2)−s . (71)

Asymptotic expansions for (71) are discussed in [32, 34]. Here, we are concerned with a
generalization of (71), namely

F (m)(s; a, b2) =
∞∑

n=0

(n + a)m((n + a)2 + b2)−s , (72)

11
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where we assume that a > 0 and b � 0. We follow [32] to derive a formula for
F (m)

(
s = − 1

2 ; a, b2
)
. We first perform a binomial expansion which is valid for b < a

and rewrite (72) as a contour integral

F (m)(s; a, b2) =
∞∑

n=0

∞∑
k=0

(−1)k
�(s + k)

�(k + 1)�(s)
b2k(n + a)−2s−2k+m, (73)

=
∞∑

n=0

1

2π i

∫
C

�(s + z)b2z(n + a)−2s−2z+m

�(z + 1)�(s)

π

sin(πz)
dz. (74)

Recall that
π

sin(πz)
= (−1)k

z − k
+ O(z − k) for k ∈ Z. (75)

The contour C encloses all the non-negative poles of 1/ sin(πz) with anti-clockwise orientation
and can be split into a part∫ −z0−i∞

−z0+i∞
,

where 0 < z0 < 1
2 , and a semi-circle at infinity. The latter does not contribute to the integral.

Now we can move the sum over n under the integral and use the definition of the Hurwitz zeta
function (67) to obtain

F (m)(s; a, b2) = 1

2i

∫ −z0−i∞

−z0+i∞

�(s + z)ζH (2s + 2z − m, a)b2z

�(z + 1)�(s) sin(πz)
dz. (76)

This can be evaluated by closing the contour again, and using Cauchy’s theorem. This time
the contribution of the integral over the semi-circle at infinity is non-zero. However, it was
shown in [34] that the contribution is very small, so we neglect it in the following.

From now on, we focus on the physically relevant value s = − 1
2 . The integral (76) has

poles at z ∈ Z due to 1/ sin(πz). Only the non-negative poles contribute, because of the
contour. The gamma function �

(
z − 1

2

)
has poles at z − 1

2 = 0,−1,−2, . . . Only the pole at
z = 1

2 lies inside the contour. Finally, there is a contribution from the pole of the Hurwitz zeta
function at 2z − 1 − m = 1. All the poles are simple unless the pole of ζH at z = 1 + m

2 is a
non-negative integer. Hence, the integral in (76) becomes

F (m)

(
−1

2
; a, b2

)
≈ Resz= 1

2
+ Resz=1+ m

2
+

∞∑
k=0

k �=1+ m
2

(−1)k
�

(
k − 1

2

)
k!�

(− 1
2

) ζH (2k − 1 − m, a)b2k,

(77)

where the sum arises from the simple poles of 1/sin(πz). Note that

�(ε) = 1

ε
− γ + O(ε) (78)

and

ζH (−k, a) = −Bk+1(a)

k + 1
, for k ∈ N, (79)

where Bm(a) are the Bernoulli polynomials and γ is the Euler–Mascheroni constant. Hence,
the residue at z = 1

2 gives

Resz= 1
2

= Bm+1(a)

m + 1
b. (80)

12
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Figure 2. The Dirac sea energy Ef =0 as a function of the coupling constant g.

Finally, for the residue at z = 1 + m
2 , we note that

ζH (1 + ε, a) = 1

ε
− �(a) + O(ε), (81)

where �(a) = d
da

ln �(a) is the digamma function, see [29, p 271]. The behaviour depends
on whether m is even or odd. For odd m this is just another simple pole, and we obtain

Resz=1+ m
2

= (−1)
m−1

2

√
π�

(
m+1

2

)
4�

(
2 + m

2

) b2+m. (82)

However, for even m there is a double pole, and we have to use

Resz=1+ m
2

= lim
z→1+ m

2

d

dz

((
z − 1 − m

2

)2 π�(s + z)ζH (2z − 1 − m, a) b2z

�(z + 1)�
(− 1

2

)
sin(πz)

)
(83)

to obtain

Resz=1+ m
2

= (−1)
m
2

b2+m�
(

m+1
2

)
4m(2 + m)

√
π�

(
2 + m

2

)
((

�

(
m + 1

2

)
− �

(m

2

)
− 2�(a) + 2 ln(b)

)
m(m + 2) − 4(1 + m)

)
. (84)

We now use the same trick as in (65) to rewrite the regularized energy in (70) as

Ef (χ)=0 = −4F (2)
(− 1

2 ; 3
2 , g2

)
+ F (0)

(− 1
2 ; 3

2 , g2
)
. (85)

The regularized energy is plotted in figure 2. As a consistency check it can be shown that
Ef (χ)=0(g = 0) = 17

240 as calculated in (68). It would be interesting to compare these results
to other regularization methods.

13
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Finally, we address the problem of calculating the Dirac sea energy for fermions coupled
to a B = 1 background Skyrmion. In this case the Dirac sea energy is given by

Ef (χ)=χ = −
∞∑

n=1

(
2n(n + 2)

(
1

2
+

√
(n + 1)2 + g2

)−s

+ (n + 1)2

(
−1

2
+

√
(n + 1)2 + 2g + g2

)−s

+ (n + 1)2

(
−1

2
+

√
(n + 1)2 − 2g + g2

)−s
) ∣∣∣∣∣

s=−1

, (86)

which is the sum of Esym and Easym for both parities. The energy of the ‘zero mode’ E0 = 3
2 −g

also needs to be taken into account, and we expect a similar picture as in [17].
Unfortunately, this is a much more complicated situation, and zeta functions of this type

have not been discussed in the literature, to our knowledge. As a starting point, we could again
perform a binomial expansion. We can then rewrite the energy Ef (χ)=χ as an infinite sum of
zeta functions F (m)

(− 1
2 ; a; b2

)
. Unfortunately, the last term in (86) leads to b2 = −2g + g2

which is negative for small g, and our formula no longer converges. It would be interesting to
derive alternative expressions for these types of zeta function.

5. Conclusion

In this paper we consider the Dirac equation for fermions on R × S3 chirally coupled
to a spherically-symmetric background Skyrmion with topological charge one. The time-
independent Dirac equation commutes with the grand spin and parity, and these symmetries
allow us to reduce the Dirac equation to a system of four linear ODEs. Making use of the
theory of Fuchsian differential equations, we derive the complete energy spectrum and the
corresponding eigenfunctions which are given by polynomials. There is a positive parity state
with energy

E0 = 3
2 − g

and a negative parity state with energy

E0 = 3
2 + g.

Both states are generally non-degenerate. The energies

E±
asym(n) = 1

2 ±
√

(n + 1)2 − 2g + g2

and

E±
asym(n) = 1

2 ±
√

(n + 1)2 + 2g + g2

all have degeneracy (n + 1)2, and correspond to states with parity (−1)G and (−1)G+1,

respectively. For G = 0, these energies were found in [27]. Finally, the energies

E±
sym(n) = − 1

2 ±
√

(n + 1)2 + g2

have degeneracy 2n(n + 2). The factor of 2 arises because the energy of these states is
independent of parity. Furthermore, these states only occur for G > 0.

For zero coupling (g = 0) the energy spectrum is E = ±(
N + 3

2

)
and the degeneracy was

found to be

D = 4(N + 1)(N + 2), (87)
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in agreement with [31]. We also found explicit formulae for accidental degeneracies which
occur for special values of the coupling constant g.

The explicit formulae for the energy spectrum and its degeneracy enabled us to write
down the zeta function related to the Dirac sea. For massive fermions on R×S3, we were able
to derive an asymptotic formula for a zeta function of generalized Epstein–Hurwitz type. The
more interesting case of fermions coupled to Skyrmions on R×S3 leads to an interesting novel
type of zeta function. However, we were unable to evaluate it using our current approach.
This is an interesting topic for further study.
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Appendix A. Grand spin eigenfunctions

In this section, we fill in the main details needed to derive the system of equations (34)–(37) in
section 3. As a starting point, we construct the total angular momentum operator eigenstates
|jm〉1 and |jm〉2 in terms of angular momentum and spin states. They are expressed as

|jm〉1 =
√

j − m

2j
Yj− 1

2 ,m+ 1
2

∣∣∣∣1

2
− 1

2

〉
S

+

√
j + m

2j
Yj− 1

2 ,m− 1
2

∣∣∣∣1

2

1

2

〉
S

, (A.1)

|jm〉2 =
√

j + m + 1

2j + 2
Yj+ 1

2 ,m+ 1
2

∣∣∣∣1

2
− 1

2

〉
S

−
√

j − m + 1

2j + 2
Yj+ 1

2 ,m− 1
2

∣∣∣∣1

2

1

2

〉
S

, (A.2)

where Yj,m is a spherical harmonic and
∣∣ 1

2 ± 1
2

〉
S

is a spin state. For general G we consider
four eigenstates, each of which can be written in terms of |jm〉1 and |jm〉2. These are

|GM〉a,c =
√

G − M

2G

∣∣∣∣j = G − 1

2
,m = M +

1

2

〉
1,2

∣∣∣∣1

2
− 1

2

〉
I

+

√
G + M

2G

∣∣∣∣j = G − 1

2
,m = M − 1

2

〉
1,2

∣∣∣∣1

2

1

2

〉
I

, (A.3)

and

|GM〉b,d =
√

G + M + 1

2G + 2

∣∣∣∣j = G +
1

2
,m = M +

1

2

〉
1,2

∣∣∣∣1

2
− 1

2

〉
I

−
√

G − M + 1

2G + 2

∣∣∣∣j = G +
1

2
,m = M − 1

2

〉
1,2

∣∣∣∣1

2

1

2

〉
I

, (A.4)

where
∣∣ 1

2 ± 1
2

〉
I

is an isospin state. Under parity

Yl,m → (−1)lYl,m, (A.5)

so that

|jm〉1,2 → (−1)j∓ 1
2 |jm〉1,2. (A.6)
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We see that |GM〉b and |GM〉c both have parity (−1)G and that |GM〉a and |GM〉d both have
parity −(−1)G. Hence, the ansatz for ψ in (32) has grand spin quantum numbers G and M
and parity (−1)G.

We need to know how the operator eχ · σ acts on the G-eigenstates in (A.3) and (A.4).
The results we require are

eχ · σ |GM〉a = − |GM〉c, eχ · σ |GM〉c = − |GM〉a, (A.7)

eχ · σ |GM〉b = − |GM〉d, eχ · σ |GM〉d = − |GM〉b. (A.8)

These results can be derived by first deducing that

eχ · σ |jm〉1 = − |jm〉2 , (A.9)

eχ · σ |jm〉2 = − |jm〉1 . (A.10)

To obtain the relations (A.9) and (A.10), the operator eχ · σ is expressed in terms of spherical
harmonics. Formulae for products of spherical harmonics are then needed. The required
results can be found in [35]; (A.7) and (A.8) then follow.

We also need to know how the operator
(−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
acts on the G-

eigenstates. The results are(
−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
|GM〉a = −(G − 1) |GM〉c, (A.11)

(
−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
|GM〉b = −G |GM〉d , (A.12)

(
−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
|GM〉c = (G + 1) |GM〉a, (A.13)

(
−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
|GM〉d = (G + 2) |GM〉b. (A.14)

In order to derive equations (A.11)–(A.14) we note that

2L · S = S+L− + S−L+ + 2S3L3, (A.15)

where S+ and S− are defined as S+ = S1 + iS2 and S− = S1 − iS2 and (S1, S2, S3) are a set of
generators of the Lie algebra of SU(2) and are related to the Pauli matrices via Si = 1

2σi . L+,
L− and L3 are the orbital angular momentum operators. We note the following result:(

−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
= (eχ · σ)(2L · S), (A.16)

which can easily be proved by multiplying out. Then

2L · S |jm〉1 = (
j − 1

2

) |jm〉1 , (A.17)

2L · S |jm〉2 = −(
j + 3

2

) |jm〉2 , (A.18)

can be proved by considering how L+, L− and L3 act on the spherical harmonics. The necessary
formulae can be found in [35]. These two equations also follow from 2L · S = J2 − L2 − S2.

It can then be seen that(
−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
|jm〉1 = −

(
j − 1

2

)
|jm〉2 , (A.19)
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−eθ · σ∂θ − 1

sin θ
eφ · σ∂φ

)
|jm〉2 =

(
j +

3

2

)
|jm〉1 . (A.20)

This leads to (A.11)–(A.14).
The operator eχ · τ acts on the G-eigenstates to give

eχ · τ |GM〉a = −2
√

G(G + 1)

2G + 1
|GM〉b − 1

2G + 1
|GM〉c , (A.21)

eχ · τ |GM〉b = −2
√

G(G + 1)

2G + 1
|GM〉a +

1

2G + 1
|GM〉d , (A.22)

eχ · τ |GM〉c = − 1

2G + 1
|GM〉a − 2

√
G(G + 1)

2G + 1
|GM〉d , (A.23)

eχ · τ |GM〉d = 1

2G + 1
|GM〉b − 2

√
G(G + 1)

2G + 1
|GM〉c . (A.24)

These equations can be proved by expanding eχ · τ then multiplying this, from the right,
by each G-eigenstate. The right-hand side of each equation is then computed and matrix
components are compared.

Equations (34)–(37) can now be derived by substituting (32) into (22) and using the
identities (A.7), (A.8), (A.11)–(A.14) and (A.21)–(A.24).
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